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Abstract
In a long history of capacity and demand management research in services, it has often been suggested that
pricing discounts and specials can increase demand in off-peak periods. We examine this issue in the contexts
of restaurants, where the practices of offering discounts to restaurant patrons for dining early or dining
late—commonly known as “early-bird” and “night-owl” specials, respectively—exist throughout the world.
These specials bridge marketing and operations—marketing from the goal of increasing customer demand in
the off-peak periods and operations from the perspective of having to serve those customers. The effectiveness
of these specials has yet to be examined. While simulation would be an ideal tool for predicting the specials’
net revenue benefits, it might be impractical for many restaurateurs, so we develop three simple “back-of-the-
envelope” type calculations. Restaurateurs could use these calculations when deciding whether to offer a
special. In the eight large simulation-based experiments we conducted, we find that it is important to estimate
revenue cannibalization from full-fare customers. The calculations prove to be far more accurate for night-owl
specials than for early-bird specials. This has important implications for decisions about offering the specials
and raises a flag regarding a potential marketing-operations conflict.
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Abstract 

In a long history of capacity and demand management research in services, it has often been 

suggested that pricing discounts and specials can increase demand in off-peak periods. We examine this 

issue in the contexts of restaurants, where the practices of offering discounts to restaurant patrons for 

dining early or dining late—commonly known as ‘‘early-bird’’ and ‘‘night-owl’’ specials, respectively—

exist throughout the world. These specials bridge marketing and operations—marketing from the goal of 

increasing customer demand in the off-peak periods and operations from the perspective of having to 

serve those customers. The effectiveness of these specials has yet to be examined. While simulation 

would be an ideal tool for predicting the specials’ net revenue benefits, it might be impractical for many 

restaurateurs, so we develop three simple ‘‘back-of-the-envelope’’ type calculations. Restaurateurs could 

use these calculations when deciding whether to offer a special. In the eight large simulation-based 

experiments we conducted, we find that it is important to estimate revenue cannibalization from full-fare 

customers. The calculations prove to be far more accurate for night-owl specials than for early-bird 

specials. This has important implications for decisions about offering the specials and raises a flag 

regarding a potential marketing-operations conflict. 
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Introduction 

Balancing capacity with demand is a classic issue in services. Because service cannot be 

inventoried, capacity must be available at the time customers are present. Typically, there are reasons that 

demand materializes at certain times. For example, demand for tax preparation services materializes prior 

to tax filing deadlines. A goal of marketing—increasing the number and revenue from the customers 

served—can exacerbate the operational challenges of serving customers, if they all want service at the 

same time. 

Our focus in this article is on a particular example of a demand-capacity balancing context, 

specifically early-bird and night-owl specials in restaurants. These are specials offered to customers for 

dining at pre-peak and post-peak times, respectively. Because they bridge marketing and operations, they 

are interesting from a research perspective. Moreover, restaurants in a number of countries offer early-

bird specials. With restaurant sales in the United States alone forecast to be over US$455 billion in 2014 

(Anonymous, 2014), such specials offer restaurateurs a perhaps enticing potential for increasing revenue. 

If capacity could be added inexpensively, one would never need to worry about peak demand. 

However, in many instances, capacity cannot be added inexpensively. In a restaurant context, while staff 

are relatively low cost and generally easy to acquire, capacity is largely determined by the size of the 

restaurant, that is, the front of house—where customers eat— and the back of house—where meals are 

prepared. The cost of increasing this capacity is significant. So, good restaurants— those where service, 

food, ambience, and prices all meet or exceed customers’ expectations—are popular and that popularly 

leads to demand exceeding capacity at peak times (e.g., Friday and Saturday evenings). 

If, again, the goal of marketing is to increase business, attempting to drive more business at peak 

times will not be effective if capacity is maxed out. Certainly, prices could be increased at peak times, 

with the aim of balancing demand with supply (i.e., capacity). However, research has shown that 

restaurant customers are not receptive to premium pricing in peak periods, though they are receptive to 



discounted prices at nonpeak times (Wirtz and Kimes 2007). The specials we examine offer the potential 

of increasing revenue without adding to peak capacity and so could be quite appealing from a marketing 

perspective. 

The rationale for offering early-bird (night-owl) specials is to increase demand in the pre-peak 

(post-peak) period, with the hope that the increase in demand yields a net revenue benefit. Clearly, 

however, increasing overall demand can have implications for operations because the peak and nonpeak 

times are not independent of each other. Customers using early-bird specials can cannibalize the capacity 

available in the peak period, while the capacity available to serve night-owl customers can be 

cannibalized by customers who arrived earlier, during the peak period. Capacity cannibalization can result 

in the specials yielding lower revenue benefits than expected. Though early-bird specials have been 

examined from the perspective of customers (Susskind, Reynolds, and Tsuchiya 2004), we are, to our 

knowledge, the first to examine their effect on operations. To our knowledge, night-owl specials have not 

been examined before. 

Our aim is to help managers make good decisions regarding whether or not to implement either 

type of special. Specifically, we look for a simple yet accurate way of estimating the net value of offering 

a special. Knowing the extent of the discount being offered, and the increase in off-peak demand to be 

expected, the net benefit of the specials can be estimated using simple, back-of-the-envelope type 

calculations that can be easily performed in a spreadsheet. Using eight large computer simulation 

experiments, we evaluate three back-of-the envelope calculations, one of which incorporates 

cannibalization effects. While there are some restaurant operations contexts where back-of-the-envelope 

approaches work quite well, there are others where simple calculations are quite inaccurate. We find that 

our estimate that considers cannibalization—the best of the three—has mixed results, working well for 

night-owl specials but notably less well for early-bird specials. These mixed results highlight the potential 

conflict that can arise from a well-intentioned marketing idea that fails to deliver the promised benefits. 



The next section reviews relevant literature, followed by the three back-of-the-envelope 

calculations that we investigate for evaluating the net benefit of the specials. The simulation studies come 

after that, where we present the experimental factors, and then our results. We close with a discussion and 

some brief conclusions. An Online Appendix presents examples of early-bird specials from restaurants 

around the world. In that appendix, we also list and provide rationale for the assumptions of the 

simulation studies and show a numerical example for the best-performing back-of-the-envelope estimate 

of the value of a special. 

 

Literature Review 

There is nearly a four-decade history of demand-capacity management research in services. 

Sasser (1976) provided two capacity strategies: Matching capacity to demand and maintaining a level 

capacity. He also suggested that demand can be affected by off-peak pricing and nonpeak promotions, 

both of which encapsulate early-bird and night-owl specials. He noted, though “… caution must be used 

in developing plans to increase demand for underused periods of the service facility. Many companies 

have made costly mistakes by introducing such schemes and not seeing the impact they would have 

expected on operations’’ (p. 137). Our results show that he was prescient with respect to early-bird 

specials. 

Lovelock (1984) presented five methods of managing demand and considered each under the 

three situations where capacity was insufficient, sufficient, and excess. The five methods were taking no 

action, reducing demand through higher prices, increasing demand by pricing lower and marketing 

efforts, inventorying demand through reservations systems, and inventorying demand through queuing 

systems. In the context we examine—walk-in restaurants—reservations are not applicable. While higher 

prices could be applied in peak periods, restaurant customers view discounts more favorably than 

premiums (Wirtz and Kimes 2007), so we base our investigation on lower prices. 



Rhyne (1988) offered demand management ideas that complement and supplement Lovelock’s 

five methods. His new suggestions were that demand could be altered by rationing and managing nonpeak 

periods. Managing nonpeak periods is the issue we examine in this article, through the use of the early-

bird and night-owl specials. 

Kimes (1989) described how yield management could be applied in service firms with limited 

capacity. Variable pricing had been identified earlier, but Kimes introduced the idea of controlling how 

the inventory (i.e., capacity) is made available to customers. In a walk-in restaurant context, this is like 

deciding what mix of tables would be used, which affects the mix of parties that can be served. As part of 

our investigation, we ensure that the mix of capacity we use is the best possible. 

Crandall and Markland (1996) presented a survey of demand management-actions across six 

service industries. Their ‘‘influence’’ strategy, which meant the organization attempted to change demand 

patterns—the context we investigate—was the third most used strategy, on average, across the industries. 

It fell below providing sufficient capacity and matching capacity to demand, but above controlling 

demand variation. These results are intuitively appealing, since they show that organizations first try to 

meet, before attempting to move, demand. 

Klassen and Rohleder (2001) categorized demand management options into shorter term and 

longer term, with price differentials falling in the shorter term category. Another shorter term option they 

identified was service differentials. While we assume that the service offering for the early-bird and night-

owl specials is the same as for regular diners, we return to the potential importance of this option in the 

discussion. 

Klassen and Rohleder (2002) presented a general mathematical programming model of the 

capacity-demand management problem and used it to explore when different options would be used. They 

found that the best strategies were context sensitive. In the environment like the one we consider, where 

capacity is largely fixed, they found the price differential strategy and the inform/educate strategy to be 



most effective. Their findings lead us to expect that early-bird and night-owl specials would be beneficial, 

with appropriately informed customers. 

Recently, Dixon et al. (2014) presented a summary of conceptual and empirical papers that 

‘‘support the notion’’ (p. 288) that congruence of marketing and operations leads to better organizational 

performance. Our investigation uses a specific context to examine a potential disconnect between 

marketing and operations. The literature contains few other context-specific examples of the marketing-

operations, demand-capacity interaction, including the following: pizza delivery (Verma, Thompson, and 

Louviere 1999), movie rentals (Evangelist et al. 2002), and a ski resort (Pullman and Thompson 2003). 

Kwortnik and Thompson (2009) used a case study of a cruise line and described the inherent operational 

challenges posed by the firm’s marketing efforts. They used these problems as the basis for developing a 

model for integrated service management. They note that ‘‘only by having an integrated approach to 

service design, marketing, and delivery can organizations hope to avoid service-system challenges . . . ’’ 

(p. 402). Early-bird and night-owl specials are just such issues, since they are marketing approaches to 

increasing revenue, but have clear implications for operations because the customers using the special 

need to be served, with, ideally, minimal effect on the full-fare customers. The specials also fall in the 

‘‘measuring and optimizing the value of service’’ topic, 1 of the 10 service-related topics for which a 

recent article in this journal called for research (Ostrom et al. 2010) and within the ‘‘customer 

segmentation’’ topic, 1 of the 7 topics on managing customers for value for which Kumar, Lemon, and 

Parasuraman (2006) suggested additional research. 

The literature on restaurant revenue management (RRM) is of some relevance to our studies. 

Since Kimes et al. (1998) first coined the term ‘‘restaurant revenue management’’ (RRM), the term has 

come to mean the actions—both marketing and operational—that restaurateurs take to drive revenue. 

Thompson (2010) presented a summary of RRM-related research that had appeared in the Cornell 

Hospitality Quarterly and listed areas in need of future research. Price discounting was one of the listed 

topics. Clearly, early-bird and night-owl specials fall in this realm. Quain, Sansbury, and LeBruto (1999) 



advocated encouraging more business at off-peak times. Wirtz and Kimes (2007), who used restaurants as 

one of their study contexts, used different pricing by time periods, a concept they stated was common 

practice in Singapore, where they collected their data. Susskind, Reynolds, and Tsuchiya (2004) observed 

that “many restaurant patrons would accept discounts as an incentive for changing their dining time to 

off-peak hours… “ (p. 78). Lefever (1989) gave an interesting narrative about his restaurant’s negative 

experience with early-bird specials, namely, issues with customers who expected to be able to receive the 

special outside the specified time. 

The efficacy of back-of-the-envelope type calculations for restaurant operations has been 

addressed on several occasions. Such calculations have found to perform well for table mixes (Kimes and 

Thompson 2005; Thompson 2011b) but not well for the revenue benefits from reducing dining duration 

(Thompson 2009). We believe that back-of-the-envelope calculations for early-bird and night-owl 

specials will be inaccurate, like those for the benefit of reducing dining duration, unless cannibalization 

effects are considered. Our rationale for this belief is that the time periods in which the specials are 

offered—the pre-peak and post-peak periods—are not independent of the peak period, because diners 

arriving for an early-bird special can spill over into the peak period, and thus cannibalize capacity better 

dedicated to full-fare customers; while in the case of night-owl specials, full-fare customers could spill 

over from the peak period into the night-owl period, leaving less capacity than expected to serve the 

customers wanting the special. Cannibalized capacity typically would lead to lower-than-expected net 

revenue accruing from the specials. We explore these ideas by evaluating the effectiveness of three back-

of-the-envelope calculations, which we introduce in the next section. 

 

Back-of-the-Envelope Approaches to Calculating the Net Value of the Specials 

To decide whether to implement an early-bird or night-owl special, presumably a manager would 

want to estimate the special’s net value to the restaurant. While using a complex simulation model would 



be ideal, along the lines of that of Evangelist et al. (2002), this could be impractical for many 

restaurateurs. Subsequently, we present three methods for estimating the net value (i.e., revenue or 

contribution) accruing from the specials. While the estimates range from very simple to moderately 

complex, they all could be easily done spreadsheet and as such do not require access to any complex 

tools. 

Before showing the calculations, we define terms. First, we assume the meal period is broken into 

periods (intervals) of the same duration (e.g., 15 minutes). Within the entire meal period, there is a set of 

periods where demand is at its peak; these peak periods are surrounded by shoulder periods. It is in the 

shoulder periods where the specials are targeted. So: 

i = index for planning intervals (periods); 

I = the set of planning intervals (periods); 

P = the set of planning intervals experiencing peak demand; and 

d = the mean meal duration, in intervals. 

We have several parameters defined on a period-specific basis: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = original expected party arrival rate in period i (i.e., parties per period); 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = special-affected expected party arrival rate in period i (parties per period); and 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = proportion of parties arriving in period i who want the special. 

There are six parameters that are common across the meal period: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = peak party arrival rate (in parties per period); 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = maximum serviceable party arrival rate per period (i.e., capacity), in parties; 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = weighted average value of a party; 



𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = original total expected value across all parties; 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = special proportion (i.e., the value of a party using the special, as a proportion of the 

value of a full-fare party); 

𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 = cannibalization adjustment factor for the early-bird specials; and 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 = cannibalization adjustment factor for the night-owl specials. 

Of the needed parameters, most are available from the historical record of the restaurant, in the 

point of sale system data. However, it is important to note that a manager would need to estimate the 

party arrival rate when the special was in place (the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 values) and the proportion of parties desiring 

the special (the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 values). We return to this in the discussion. 

Both the special proportion and cannibalization adjustment factors listed previously need further 

explanation. The special proportion represents the value of a customer using the special, as a proportion 

of a full-fare customer’s value. Because of the way it is defined, the special proportion could be 

considered to a discounted sales price proportion if the value is being calculated as revenue or it could be 

a discounted contribution proportion if the value is being measured as contribution. We note that the 

particular nature of the special will affect the numerical value of this parameter. 

The cannibalization adjustment factor represents a multiplier of the estimated cannibalization of 

full-fare business. By using a cannibalization adjustment factor in the calculations shown subsequently, 

we can better approximate the capacity (and revenue) cannibalization that occurs in a dynamic restaurant 

setting. The value of this parameter is very important, and much of our effort in the article is on 

establishing a good rule-of-thumb value for the cannibalization adjustment factor, to ensure that the back-

of-the-envelope calculations work as well as they possibly can. 

Finally, we have the three estimations of the value accruing from the specials: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉1 = net special-affected total expected value across all parties, Method 1; 



𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2 = net special-affected total expected value across all parties, Method 2; and 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉3 = net special-affected total expected value across all parties, Method 3. 

Subsequently, we show how the value estimates are calculated. We begin by calculating an 

original estimate of the total value the restaurant achieves during the meal period: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × �(min(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)).
𝑖𝑖∊𝐼𝐼

 

            (1) 

The estimated revenue before the special is implemented (Equation 1) is calculated by 

multiplying the value of a party times the sum, across all periods, of the lower of the period’s party arrival 

rate and the restaurant’s capacity. This value should match the restaurant’s historical records from the 

point-of-sale system. 

The first estimate of the value of the special, sums, for all periods, the special-influenced party 

arrival rate in the period, times the average party value for the period and then subtracts the original 

value: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉1 = ��𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 × �(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.
𝑖𝑖∊𝐼𝐼

 

             
            (2) 

 

Note that the party value for a period is given by the proportion of parties in the period that do not 

select the special, times the value they each provide, plus the proportion that select the special, times the 

value they each provide. 

The second estimate of the value of the special is very similar to the first, except that it limits the 

number of customers served in each period to the capacity: 



𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2 = ��min(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) × �(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��
𝑖𝑖∊𝐼𝐼

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 
            (3) 

Because of the capacity limit imposed in Equation 3, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2 will be a more conservative 

estimate of the value of the special than will 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉1. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉3 is even more conservative than the second and it comes in two forms—one for early-

bird specials, Equations 4 and 5, and one for night-owl specials, Equations 6 and 7. Both forms start from 

ValEst2 and then subtract an estimate of the cannibalization of full-fare business (i.e., capacity) that will 

result from the special. For the early-bird specials, we first estimate the cannibalization that will occur: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ×�(max(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑑𝑑 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑑𝑑)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0)).
𝑖𝑖∊𝑃𝑃

 

            (4) 

Equation 4 assumes that the number of full-fare parties that are cannibalized in period i is the 

amount by which the additional parties coming in from the special, who arrived d periods earlier, added to 

the customers arriving in the full-fare period, exceed the available capacity. (We also tested a version of 

Equation 4 that considers that parties taking the special can affect capacity in up to d periods, but it did 

not work as well as the version we present.) We then subtract, from the second value estimate, a 

multiple—the cannibalization adjustment factor—of the estimated cannibalization, to arrive at𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉3𝑒𝑒𝑒𝑒: 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉3𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2− 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒.     (5) 

 

Similarly, the third estimate for the night-owl special begins with an estimate of the capacity that 

could be devoted to the night-owl customers but is in fact used by full-fare customers who arrived earlier: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × �(max(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖+𝑑𝑑)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0 )).
𝑖𝑖∊𝐼𝐼

 

            (6) 



Note that Equation 6 uses a cannibalization factor from d periods into the future. At first, it may 

seem counterintuitive that later-arriving customers can affect sales in the current period. However, the 

equation is designed to capture the fact that parties who arrived during the peak interval, who might still 

be waiting for service in the period in which the special applies, could reduce the number of (new) 

special-desiring customers who would be served. As for the early-bird estimate, we then subtract a 

multiple (the cannibalization adjustment factor) of the estimated cannibalization from the second value 

estimate, to arrive at𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2𝑛𝑛𝑛𝑛: 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2− 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛.     (7) 

 

Both Equations 5 and 7 use the cannibalization adjustment factor mentioned previously, though 

we allow different values for early-bird and night-owl cases. Simply put, the cannibalization adjustment 

factor is a multiplier of the cannibalization in Equations 4 and 6. It could range from zero to values higher 

than one. Zero would be where no cannibalization occurs, in which case ValEst2 and ValEst3 would be 

identical. A cannibalization adjustment factor of 1.0 would be full cannibalization, as we measure it in 

Equations 4 and 6. Since the estimate of cannibalization in Equations 4 and 6 may, in actuality, fall below 

the true cannibalization that occurs, a cannibalization adjustment factor higher than one might be 

appropriate, which we do see in some cases for both specials. Obviously, bigger cannibalization 

adjustment factor values yield bigger differences between ValEst2 and ValEst3. We also note that the 

cannibalization estimates in Equations 4 and 6 only apply if demand exceeds capacity, so any 

cannibalization effect would be small or nonexistent in restaurants where peak demand was below 

capacity. In our studies, we evaluate a range of values for the cannibalization adjustment factors, which 

will enable us to provide general advice to managers. 

The nature of these calculations leads us to expect that: 

1) ValEst1 will be the least accurate estimate of the special value; 



2) ValEst2 will perform better than ValEst1, since it considers that capacity limits the number of 

customers served; and 

3) ValEst3 will be the most accurate, since it offers a means of addressing the cannibalization 

effects. 

Our simulation studies, which we discuss next, were created to test the effectiveness of the three 

value estimators in early-bird and night-owl settings. 

 

Simulation Studies 

To evaluate the accuracy of the three methods of estimating the net value of the specials, we 

selected the methodology of discrete-event simulation. There are a number of advantages of using 

simulation. First, it allows us to evaluate a very large number of different restaurant contexts. Second, we 

can easily construct full-factorial designs. Third, we are not limited to cases where restaurants  

 

INSERT TABLE 1 HERE 

 

implemented specials, as data accuracy can be problematic in restaurants (Kimes and Beard, 2013). As we 

describe subsequently, we created a model that simulates the arrival and service of restaurant patrons. We 

vary many characteristics in the model, allowing us to examine the issue of specials in a very broad way. 

This model is akin to those of Evangelist et al. (2002) and Pullman and Thompson (2003), for examining 

the effects of capacity and demand decisions in services. 

We conducted eight simulation-based studies, as summarized in Table 1. All of the studies 

evaluate the special-value calculations using 15-minute planning periods. The studies differed based on 

whether they used early-bird or night-owl specials, whether the specials were assumed to simply increase 

demand in the special window or move demand from the peak period to the special window, or whether 

the special applies to all diners in the special window or only to the incremental customers. Studies 1–4 



use early-bird specials, while Studies 5–8 use night-owl specials. Studies 1, 2, 5, and 6 assume that the 

specials increase demand in the special window, without affecting demand at any other time, while 

Studies 3 and 4 (7 and 8) assume that some customers who would have arrived in the peak demand 

period, but within an hour of the special, arrive an hour earlier (later) than they would have. In Studies 1, 

3, 5, and 7, we assume that all existing customers, plus any incremental customers accruing from the 

special, use the special pricing. In Studies 2, 4, 6, and 8, we assume that only the incremental customers 

accruing from the special use the special pricing, while the existing customers continue to purchase as 

before. Other than these differences, the eight studies share many experimental factors, which we 

categorize as environment related and special related. A description of the factors follows. 

 

Environmental Factors 

All studies had seven environmental factors defining the characteristics of the restaurants and 

customers, as presented in Table 2. We selected these factors, and their levels, to give a broad range of  

 

INSERT TABLE 2 HERE 

 

restaurant environments and because we believed these factors could affect the accuracy of the special 

benefit calculations. Since we used a full factorial design, the levels of the environmental factors yielded a 

total of 144 environments. 

We selected two sizes of restaurants for the Restaurant Size factor 50 and 200 seats. The larger 

size we consider falls within the median and mean restaurant sizes of 150 and 211 seats in a survey 

conducted by Thompson (2011a). 

Peak Demand Intensity had three levels, ranging from 90% to 110%of full capacity. Earlier 

studies have ranged from a low of 95% of full capacity (Thompson and Sohn 2009) to a high of 300% of 

full capacity (Thompson 2011b) but most falling around full capacity (Thompson 2002, 100%; Kimes and 



Thompson 2005, 100%; Thompson and Sohn 2009, 105%; Kimes and Thompson 2005, 120%; Thompson 

2011a, 130%). While a common premise of RRM is that demand exceeds capacity, we include the 90% 

level because that might be just the kind of situation in which restaurateurs would be interested in offering 

the specials. 

Length of Peak (demand) Period had two levels, of 2 and 4 hours. This represents the amount of 

time during which customers arrive at the highest rate. From the length of the peak period, it should be 

clear that we are simulating a single meal period. With a mean dining duration of 60 minutes, the peak 

duration means that the restaurant should be able to turn its tables about twice and about four times for the 

two levels of this factor. Anecdotal evidence suggests that most full service restaurants have fewer than 

four table turns in a single meal period. 

Length of Ramp-Up Period is the time difference between a restaurant’s opening for meal service 

and the time at which the peak customer arrival rate first occurs. We used two levels for this factor in 

Studies 1–4, representing ramp-up periods of 1 and 2 hours. In Studies 5–8, we held the ramp-up duration 

at a constant 1 hour. In all studies, we assumed that demand would ramp up linearly. 

Length of Ramp-Down Period is the time difference between when the peak customer arrival rate 

last occurs and the restaurant’s closing for meal service. In Studies 5–8, we used two levels for this factor, 

representing ramp-down periods of 1 and 2 hours. Studies 1–4 used a constant ramp-down period of 1 

hour. All studies assumed that demand would ramp down linearly. 

Various authors have observed that dining duration increases with party size (Bell and Pliner 

2003; Kimes and Robson 2004; Kimes and Thompson 2004). We captured this phenomenon using the 

Dining Duration Variation by Party Size factor. This factor had two levels, that is, ratios of the mean 

dining time for a party of 10 compared to the mean dining time for a party of one of 1.5 and 2.0. These 

ratios fall in the range reported in the literature—a low of 1.14 (Kimes and Thompson 2004) to a high of 

3.18 (Bell and Pliner 2003). For both levels, we assumed that dining duration increased linearly across 

party sizes. With the party size probabilities and dining times we used (reported in Table 3), both factor 

levels maintained a weighted average dining time of 60 minutes and a mean party size of 2.6 people. To 



the best of our knowledge, mean party size is reported explicitly for individual restaurants only by Kimes 

and Robson (2004) and Thompson (2011b); in their cases, it was 2.6 and 2.55 people per party, 

respectively. 

The last environmental factor is Wait Tolerance by Party Size, which had three levels. Anecdotal 

evidence suggests that larger parties are willing to wait longer for a table than are smaller parties (Field, 

McKnew, Kiessler 1997), although we are not aware of published research on the topic. Larger parties 

may tolerate longer waits because they find it more difficult to move to another restaurant and because 

they know that it is hard for restaurants to accommodate them. To cover a broad range of competitive 

environments, the three factor levels used average wait tolerances of 15–30, 30–60, and 60–120 minutes 

for parties of 1 to 10, with equal differences between party sizes (e.g., for Level 1, party sizes of 1 to 10 

had average wait tolerances of 15, 16.5, 18, … , 28.5, and 30 minutes, respectively). 

 

Special-Related Factors 

We used five special-related experimental factors, as summarized in Table 4. We based these 

factors loosely on the actual early-bird specials listed in Table S1 in the Online Appendix. 

We describe the five factors subsequently. 

Discount Level had three levels, representing discounts off the original average check by party 

size of 5%, 10%, and 30%. Demand Bump, which had six levels, represents the increase in customer 

arrivals resulting from the early-bird or night-owl special. The first three levels were applied as a demand 

multiplier, while Levels 4 through 6 represented additive demand. For example, Level 1 represented an 

increase of 50%, times the discount, times demand expected in each time period the special was offered; 

while Level 4 added 50%, times the discount, times the full-capacity demand, to any period in which the 

special was offered. So, if the discount level was 10%, a 50% demand bump would  

 

INSERT TABLE 3 HERE 
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be an increase of 5% of the initial demand (¼10% 50%) for Level 1 and an increase of 5% of the full 

capacity demand for Level 4. Figure 1 in the online Appendix gives an example. 

Special Window, which has three levels, defines the time window in which the special applies. It 

is applied similarly in both the early-bird and night-owl cases, with the difference being that the special 

window starts at the restaurant open in the early-bird case, while the window ends at restaurant close in 

the night-owl case. The lower the level of the special window factor, the earlier (later) the early-bird 

(night-owl) special ends (starts); that is, it ends (starts) further away from the peak demand period. 

To illustrate how the Special Window is operationalized in the early-bird studies, consider the 

case where the ramp-up period is 2 hours (120 minutes). Recall that the mean dining duration in 60 

minutes in all cases. The first level of the Special Window has the special ending at the start of the peak 

less two thirds of the mean dining duration, which means that the special applies from time zero (when 

the restaurant opens) through minute 80 (= 120 – 2/3 x 60). The second level of the Special Window has 

the special ending at the start of the peak less one third of the mean dining duration, which means that the 

special applies from time zero through minute 100 (= 120–1/3 x 60). Finally, the third level of the Special 

Window has the special ending at the start of the peak, which means that the special applies from time 

zero through minute 120. 

Special Application, which has two levels, determines how the special applies. This factor has 

two levels. Level 1 applies a special based on the time at which a party arrives, while Level 2 applies a 

special based on the time at which a party was seated. Obviously, in Level 2, some customers who arrive 

within the early-bird special window might not actually be able to get the special, if they had to wait for a 

table. 

 



Simulation Process 

The combinations of environmental and special-related factors yielded a total of 15,696 scenarios 

in Studies 1, 2, 5, and 6 and 7,920 scenarios in Studies 3, 4, 7, and 8. The scenarios arise from the 144 

combinations of environmental conditions, times 109 (55) combinations of special conditions (including 

the no special, base case) for Studies 1, 2, 5, and 6 (3, 4, 7, and 8). 

We conducted the simulations studies, which had an embedded optimization process, using a 

built-from-scratch restaurant simulator, similar to the TableMix model described by Thompson (2002). 

For each scenario in each study, we used a search process to identify the revenue maximizing mix of 

tables. We did this to ensure that the table mix was the most appropriate possible for the given restaurant 

scenario, which, we believe, helps ensure that any inaccuracy of the special value estimators is a function 

of the estimators themselves, rather than because we used a nonrevenue-maximizing table mix. The 

optimization search process we used was similar to that described by Kimes and Thompson (2005)—

based on Simulated Annealing and using 100 iterations—who found their table-mix heuristic yielded 

solutions within 0.1% of optimal table mixes. Using an optimal process was impractical, given the size of 

our studies. For each scenario, we simulated 100 days of operation, which is the equivalent of a year’s 

worth of peak meal-period operations (with two peak days a week, typically Friday and Saturday). As the 

key output from each scenario, we collected the actual revenue obtained using the best performing table 

mix. We then compared this revenue to that obtained when we simulated the comparable no special 

scenario, yielding a (simulated) net revenue from the special operative in the scenario. Finally, we 

compared the simulated net revenue to that estimated by each of the back-of-the-envelope calculations, 

that is, Equations 1–7. 
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Results 

To evaluate the three estimates of special value, we assume that managers use the following 

decision rule: If the estimated value of the special equals or exceeds a specified hurdle value, then 

implement the special. This decision rule yields two obvious performance metrics. The first is the 

Profitable Decision Percentage, which we measure as the percentage of scenarios in which an estimator 

predicts that the value of the special will equal or exceed a specified hurdle value, and the actual value 

achieved is positive: 

 

Profitable decision percentage =

( ⧣𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 >$0)

# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
  x 100%.   (8) 

 

The estimated special value in Equation 8 comes from the back-of-the-envelope estimates, while 

the actual value comes from the simulated restaurant operations. 

We use the metric defined in Equation 8 to explore the effects of different cannibalization 

adjustment factors and different hurdle values, for the early-bird (Figure 1a) and night-owl (Figure 1b) 

specials. Unsurprisingly, the Profitable Decision Percentage increases as the hurdle value increases, 

because the likelihood that a restaurant makes money from the special in practice increases with higher 

estimated values of the special. However, the percentage also increases as the cannibalization adjustment 

factor increases, indicating the importance of considering the cannibalization effect. For both specials, 

though, the increase in Profitable Decision Percentage generally plateaus (at lower cannibalization 

adjustment factor values for higher hurdle values). A comparison of the early-bird and night-owl cases 

shows that the Profitable Decision Percentage is higher across the board for the night-owl specials. 

We next present a comparison between the Profitable Decision Percentage across estimation 

methods, which is illustrated in Figure 2. For this comparison, we fixed the cannibalization adjustment 

factor at 0.90 for ValEst3, which as Figure 1 shows, yielded a consistently high Profitable Decision 



Percentage. In both the early-bird and night-owl cases, ValEst3 dominated, though, again, the percentage 

was higher for night-owl decisions, indicating that the estimated values of the night-owl specials proved 

to be more accurate than those of the early-bird specials. The ordering of the methods is consistent with 

our expectations regarding the relative performance of the methods of estimating the value of the specials. 

The Profitable Decision Percentage is a somewhat lax metric. For example, an estimated special 

value of US$100 that actually only yielded US$1 would still be reported as a profitable decision. Because 

of this, we also use our second and more important performance metric, Value Achieved Percentage. 

Value Achieved Percentage is the percentage of the estimated value of the special that is actually 

achieved. It is found by averaging, across any scenario where the estimated value of the special equals or 

exceeds a specified hurdle value, the ratio of the actual value of the special divided by the estimated value 

of the special, converted to a percentage by multiplying by 100%: 

 

Value Achieved Percentage

=
∑ � Actual Value of the Special

Estimated Value of the Special� × 100%Scenarios where the estimated value of the special ≥hurdle value

⧣ of scenarios where the estimated value of the special ≥  hurdle value
 

            (9) 

Again, we find the actual value of the special by simulating the restaurant operations and the 

estimated value of the special comes from ValEst1, ValEst2, and ValEst3. For managers to make the best 

decisions, Value Achieved Percentage should be 100%, since that means the estimate of value was 

perfectly accurate; in other words, that the estimated benefits were fully achieved in practice. 

Figure 3 shows the Value Achieved Percentage results for ValEst1 and ValEst2 and for ValEst3 

using cannibalization adjustment factors ranging from 0.2 to 2.0, for the early-bird and night-owl studies. 

As the figure shows, the Value Achieved Percentage sometimes exceeded 100%. This happens when the 

cannibalization adjustment factor over-predicts the amount of cannibalization that actually occurs. For the 

early-bird cases, higher values of the cannibalization adjustment factor tended to work better than lower 

values. However, as the hurdle value increased, the best Value Achieved Percentage dropped to just under 

50%—in other words, the actual revenue benefit from implementing the special was less than half what 



the best value estimator indicated it would be. Across all hurdle values, a cannibalization adjustment 

factor of 1.6 yielded the highest average Value Achieved Percentage for the early-bird studies, at 70.14%. 

This compares very favorably to the average Value Achieved Percentage of -0.02% for ValEst1 and 

1.64% for ValEst2 and supports our expectations regarding relative effectiveness of the methods of 

estimating the value of the specials. 

 

INSERT FIGURE 2 HERE 

 

Value Achieved Percentage results were notably higher in the night-owl studies than in the early-

bird studies. Across the hurdle values, the best cannibalization adjustment factor for ValEst3 was 1.0, 

which averaged a Value Achieved Percentage of 99.51%. Again, this is notably better than the average 

Value Achieved Percentage of 28.24% for ValEst1 and 31.78% for ValEst2 and supports our 

expectations. 

Table 5 transforms the results illustrated in Figure 3 to evaluate the best overall cannibalization 

adjustment factor. It reports the Value Achieved Percentage, by special and by hurdle values, and 

compares the best hurdle value–specific cannibalization adjustment factor with the best overall 

cannibalization adjustment factor. There are notable differences in results across the specials. For the 

early-bird specials, the best overall cannibalization adjustment factor of 1.6 was the best for three of the 

five hurdle values and close to the best hurdle-specific cannibalization adjustment factor for the other two 

hurdle values. By contrast, for the night-owl specials, the best cannibalization adjustment factor increased 

as the hurdle value increased, from 0.6 with US$10 and US$25 hurdle values, to 1.2 with US$100 and 

US$200 hurdle values. The best overall cannibalization adjustment factor of 1.0 was the best only for the 

US$50 hurdle value. 

To explore the factors that could be affecting the accuracy of the ValEst3 estimate of the value of 

an early-bird special, we ran a regression analysis. The dependent variable was the actual value of the 



special (from the simulation), expressed as a percentage of the estimated special value from 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒 (i.e., the Value Achieved Percentage). We used a cannibalization adjustment factor of 1.6, since 

that yielded the best overall results as illustrated in Figure 3. The independent variables were the level 

indexes of the environmental and special-related factors. We imposed a restriction that the scenario 

needed to have an estimated value of the special that equaled or exceeded a US$100 hurdle value, which 

was achieved in 3,144 of the 47,232 scenarios in Studies 1–4. Results of this regression are given in Table 

6. All of the factors were statistically significant at the α = .001 level, except for the length of the peak 

demand window, the demand bump/shift, and when the special applies, which were not significant at the 

α = .05 level. The actual value achieved was a higher percentage of the estimated value for: 

• the smaller restaurant (compared to the smaller restaurant, the larger restaurant decreased the 

Value Achieved Percentage by 15.3 percentage points); 

• higher peak demand intensity (each increase in demand intensity increased the Value Achieved 

Percentage by 16.5 percentage points); 
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• longer ramp-up periods (compared to the 1-hour ramp-up, a 2-hour ramp-up increased the Value 

Achieved Percentage by 61.2 percentage points); 



• more similar dining durations across party sizes (compared to the lower duration variation, the 

higher variation decreased the Value Achieved Percentage by 5.5 percentage points); 

• a longer waiting tolerance (each increase in wait tolerance increased the Value Achieved 

Percentage by 8.4 percentage points); 

• higher levels of the discount (each increase in the discount increased the Value Achieved 

Percentage by 17.9 percentage points); and 

• a longer special window (each increase in the length of the special window increased the Value 

Achieved Percentage by 28.7 percentage points). 

 

We note that the scenarios in which the hurdle value is achieved are not equally distributed across 

the studies. Figure 4 illustrates the percentage of scenarios in each study where the hurdle value is 

achieved for ValEst3. We used the cannibalization adjustment factor values reported earlier that yielded 

the best Value Achieved Percentage results (i.e., a value of 1.6 for the early-bird studies and a value of 1.0 

for the night-owl studies). Not shown are Studies 3 and 7, where no scenarios achieved the hurdle value. 

These results clearly demonstrate that the hurdle values are achieved much more often when demand 

increases in the special period than when it is shifted into the special period. 

 

Discussion and Conclusions 

Contributions to Service Theory 

In this article, we examined a specific context of service capacity-demand management, 

specifically the use of early-bird and night-owl specials in restaurants to increase demand in the pre- and 

post-peak periods, respectively. Many researchers have advocated price discounts and specials to increase 

non-peak demand, beginning with Sasser (1976). 

To investigate the use of early-bird and night-owl specials in restaurants, we developed three 

back-of-the-envelope estimates for the value of such specials. We found that estimating the value of the 



specials was most effective when the effect of cannibalization of full-fare business was included (i.e., 

ValEst3). Across our four early-bird (night-owl) studies, a cannibalization adjustment factor of 1.6 (1.0) 

proved to yield the best estimate of the value of the specials (i.e., a Value Achieved Percentage closest to 

100%). Nonetheless, the efficacy of back-of-the-envelope calculations for predicting the revenue increase 

from specials had mixed results—performing quite well for night-owl specials, but notably less well for 

early-bird specials. While our simulation-based studies had a large number of assumptions, the nature of 

the assumptions was such that they are unlikely to have notably affected the accuracy of the calculations, 

with one exception, which we address subsequently. The results from four simulation-based studies 

showed that the revenue actually achieved for early-bird specials was at times under 50% of that 

estimated by the best of the back-of-the-envelope calculations (ValEst3, with a cannibalization adjustment 

factor of 1.6). Our results show that the back-of-the- envelope calculations of the revenue benefit of early-

bird specials fall, like those of the benefits of reducing dining duration (Thompson 2011b), in the 

‘‘seriously inaccurate’’ category. However, the cannibalization-based value estimation was much better 

for the night-owl specials. We speculate that this is because these specials bring people into the restaurant 

after the peak period, when demand is tailing off, and so there is a more natural separation between the 

peak and post-peak period than between the pre-peak and peak periods. 

 

INSERT FIGURE 4 HERE 

 

The results show that how the early-bird specials affect overall revenue is more complex than just 

a simple cannibalization effect. The reason for this is that the best cannibalization adjustment factor was 

1.6 for the early-bird studies, yet the net value achieved was only about 50% of that estimated under the 

highest hurdle value we examined, and about 70% across all the hurdle values. If it was simple to measure 

cannibalization, a higher cannibalization adjustment factor would have led to a higher revenue yield than 



what we observed. In reality, cannibalization is difficult to capture simply, perhaps because of the 

variation in dining duration both within and across party sizes. 

Early-bird and night-owl specials are two of the processes that bridge marketing and operations. 

If marketing took a back-of-the-envelope approach to predicting the revenue benefits of the early-bird 

specials, operations might well be blamed when the revenue did not materialize as expected. This would 

be a classic case of marketing-operations conflict. The poor performance of the value estimators in the 

early-bird context supports Sasser’s (1976) warning that operational results may not be as good as 

expected when attempting to increase business in slow periods. The poor performance conflicts with the 

Klassen and Rohleder’s (2002) findings regarding the benefit of shifting demand in capacity constrained 

services. This discrepancy could be explained by their specific context, in that they did not consider how 

service spills over—from the pre-peak period to the peak period and from the peak period to the post-

peak period—and so capacity cannibalization was not operative in their study. 

 

Managerial Implications 

We see at least five implications for practice from our findings. First and foremost, managers 

would need to be very cautious using back-of-the-envelope calculations for estimating the effectiveness 

of early-bird specials. While ValEst3 was the best predictor of special value, it was still far from fully 

accurate. Because of the lower captured revenue (i.e., at times less than 50% of that estimated), managers 

could well make incorrect decisions to implement the specials, thinking that the benefit they would get 

would be much higher than what they actually get, which seems consistent with Lefever’s (1989) 

criticism of the specials. Instead, managers’ efforts to improve a restaurant’s revenue perhaps would 

better be directed elsewhere. Alternatively, if a manager really is interested in implementing an early-bird 

special, the best advice would be to forgo a simple calculation and instead resort to a simulation of real 

restaurant operations to see how the special might play out. To that end, Evangelist et al. (2002) 

demonstrates the benefits of using a complex simulation model in service capacity-demand context. 

Should simulation be impractical, it would be safest to use a cannibalization adjustment factor of 1.6, 



since that value performed well across all hurdle values. While full or close-to-full revenue benefits can 

be expected at hurdle values of US$25 or under, it would be appropriate to assume that only half the 

expected benefit would be achieved when hurdle values were US$100 or higher. 

Second, managers should be reasonably confident in using the back-of-the-envelope calculations 

for estimating the effectiveness of night-owl specials, with a couple of provisos. First, the proportion of 

customers who will use the special must be estimated accurately. Second, it is important to consider the 

cannibalization effects (using ValEst3), and we found that using a cannibalization adjustment factor of 1.0 

worked best overall for night-owl specials. We note, however, that the best cannibalization adjustment 

factor was very dependent on the hurdle value, with the best cannibalization adjustment factor increasing 

under higher hurdle values. 

Third, while we assumed that the dining duration would be the same for those patrons selecting 

the special, a lower duration would reduce the cannibalization effect in the early-bird case. A reduced 

duration would improve the viability of specials and improve the accuracy of the back-of-the-envelope 

calculations. So, a restaurateur would want to ensure the early-bird parties could be served quickly and 

have the tables ready as quickly as possible. A lower duration could be achieved through offering a more 

limited menu, consistent with Klassen and Rohleder’s (2001) suggestion of service differentials. 

Fourth, our regression results yield insight into situations where early-bird specials are likely to 

be most effective: those where demand ramps up more slowly, over a longer time, to reach its peak and 

when a restaurant’s demand was well above capacity. The former contributes to a separation between the 

special period and the peak period, thus reducing the complex effects of cannibalization, while in the 

latter case, the excess demand may be better captured using the special. 

Fifth, we made an assumption in the studies that level of demand increase (or demand shift) used 

in the back-of-the-envelope calculations would actually be achieved. In reality, this is uncertain, and so 

the actual revenues may well be even lower than what we saw in our simulation results. 

 

 



Limitations and Future Research 

While the poor performance of even the best value estimator in the case of early-bird specials 

would seem to warrant the development of better estimates of the value of those specials, we do not view 

this as a particularly useful endeavor. First, as we noted previously, it would likely require a more 

sophisticated method than just a simple estimate of the cannibalization effect. Second, a more direct and 

accurate approach is to use a sufficiently complex simulation model. 

While we found that the value of night-owl specials can be estimated with reasonable accuracy, 

an unresolved issue is whether demand can be time-shifted into the post-peak period. The paucity of real 

examples of night-owl specials suggests it is difficult, but studies may help determine whether this is the 

case. 

As noted earlier, a lowered dining duration in the special period should improve the accuracy of 

the estimates and their overall benefit. While this suggests that offering a more limited menu might be 

more effective than simply offering a discount on the regular menu, we leave this investigation to future 

research. 

We observed that the specials were more effective when demand increased in the nonpeak period, 

rather than when it was shifted. However, this may be a result of the demand intensity values we used, 

since the greater the amount by which demand exceeds capacity, the more benefit that would be expected 

by time shifting the excess. It would be interesting to examine the effects of time-shifting demand or 

raising prices in the peak periods, under higher levels of excess demand than what we considered. 

Finally, while our study assumed all parties were walk-ins, an effective reservation system could 

help limit the extent to which the early-bird or night-owl customers affect the capacity used for full-fare 

customers. We leave this issue for future research. 

In closing, we note that our findings offer further support for the need to think holistically about 

marketing and operations, as espoused by Kwortnik and Thompson (2009). The difference between the 

accuracy of revenue estimates for early-bird and night-owl specials shows that context—that is, when a 

special is offered—really matters. 
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