Tackling the Investment Decision as a “Newsvendor Problem”

Gary Thompson
Cornell University School of Hotel Administration, gmt1@cornell.edu

Follow this and additional works at: https://scholarship.sha.cornell.edu/articles
Part of the Hospitality Administration and Management Commons

Recommended Citation

This Article or Chapter is brought to you for free and open access by the School of Hotel Administration Collection at The Scholarly Commons. It has been accepted for inclusion in Articles and Chapters by an authorized administrator of The Scholarly Commons. For more information, please contact hotellibrary@cornell.edu.

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.
Tackling the Investment Decision as a “Newsvendor Problem”

Abstract
The newsvendor model is a classic approach to determining how to set appropriate inventory levels for products whose value is perishable. While the newsvendor analysis does not yield the richness of data found in a simulation-based model, newsvendor analysis provides a relatively simple way to determine inventory levels.

Keywords
inventory analysis, newsvendor model

Disciplines
Hospitality Administration and Management

Comments
Required Publisher Statement
© Cornell University. Reprinted with permission. All rights reserved.
The newsvendor model is a classic approach to determining how to set appropriate inventory levels for products whose value is perishable. While the newsvendor analysis does not yield the richness of data found in a simulation-based model, newsvendor analysis provides a relatively simple way to determine inventory levels.

Keywords: inventory analysis; newsvendor model

In their article, Professors Dittman and Hesford present a simulation-based optimization approach for investment decisions. The case they look at—deciding on the number of rooms to convert to allergy free—is interesting and relevant, and their methodology is sound. I firmly believe in the usefulness of simulation as a modeling tool, as I have written previously (Thompson and Verma 2003). In this note, I would like to present a simpler approach to the problem, which, though lacking the richness of simulation, is more amenable to a “back of the envelope” calculation. As I will show, it yields the identical decisions in this setting.

The approach I illustrate here is to model the decisions of price and room quantity as variants on the classic “newsvendor” inventory problem from the field of operations management. I will first examine the decision of the room price; once the price is set, I will consider the ideal number of rooms to convert.

In the newsvendor problem, which is also known as a “single period inventory model,” a newsvendor is faced with the task of ordering newspapers. Newspapers unsold at the end of the day have limited value. The assumption is that the newsvendor cannot
restock newspapers during the day and so must make the best decision to maximize revenue, given demand uncertainty. An additional newspaper should be ordered as long as the expected marginal profit from selling that newspaper exceeds the expected marginal cost of not selling it. Formally,

\[
\text{Order paper } j \text{ as long as } p \times MP > (1-p) \times MC. \quad (1)
\]

where

\(p = \) the probability that paper \(j \) will be sold at full price,

\(MP = \) marginal profit of selling paper \(j \) at full price,

\(= VFR - VC \) (where \(VFR = \) variable full revenue, per item and \(VC = \) variable cost, per item), and

\(MC = \) marginal cost of not selling paper \(j \) at the full price,

\(= VC - VSR \) (where \(VSR = \) variable salvage revenue, per item, and \(VC \) is as defined above).

Simplifying equation (1) yields a decision rule for ordering paper \(j \) based on the probability that it sells at full price:

\[
p > MC/(MP + MC). \quad (2)
\]

In the newsvendor inventory-management problem, equation (2) is also known as a critical fractile.

In the setting described by Dittman and Hesford, one must modify equation (2) to address the issue of occupancy. The probability that an item—in this case an allergy-free room—sells at full price can be thought of as the product of the probability that the room sells at full price, assuming full occupancy times the occupancy proportion. Defining \(o \) as the occupancy proportion and \(p' \) as the probability that an item sells (assuming full occupancy), we get

\[
p' \times o > MC/(MP + MC). \quad (3)
\]

which can be rewritten as

\[
p' > MC/o \times (MP + MC). \quad (4)
\]

The effect of considering occupancy, then, is to raise the critical fractile.

Examining first the room-pricing decision, one can construct a table of critical fractiles, as shown in Exhibit 1. Values in Exhibit 1 are interpreted as follows. Considering a pricing premium of $5 per room, for example, a room would only be converted if the probability that it could be sold at that price was higher than .75. From the survey reported by Dittman and Hesford (in their Exhibit 2), only 59 percent of customers would be willing to pay a $5 (or more) premium. Of the different possible price premiums, only $10 meets the criterion of customer willingness to pay exceeding the critical fractile; the best decision, then, is to price the allergy-free rooms at a $10 premium.

Having determined the price to charge, one can then examine the decision of the number of rooms to convert. In conducting this analysis, I will look for the number of rooms to convert, such that the probability of the last-converted room being sold exceeds the appropriate critical fractile. To perform this analysis, use the data in Exhibit 4 from Dittman and Hesford’s article to calculate the values shown here in Exhibit 2.

Since the data in Exhibit 2 include the times when the property is not occupied, we need to calculate a critical fractile that does not include the effect of occupancy. For the $10 room premium, the occupancy-free critical fractile, \(p \), is given by \(p > 2.77/(7.23 + 2.77) = 0.277 \). As such, the ideal number of rooms to convert is given by the largest number of rooms for which probability of needing that number of rooms exceeds 0.277. This is 54.15 rooms, which we round to 54 rooms—the same solution yielded by the simulation optimization performed by Dittman and Hesford.
Limitations of the Newsvendor Approach

Applying a newsvendor approach has three limitations relative to using simulation. First, while the newsvendor approach considers variability, it yields a single (marginal) profitability value. It cannot, as does simulation, provide information on the variability that one might expect in the profitability.

Exhibit 1:
Critical Fractile Values, by Room Price Premium

<table>
<thead>
<tr>
<th>Room Price Premium</th>
<th>MC</th>
<th>MP</th>
<th>O</th>
<th>Critical Fractile</th>
<th>Probability of a Customer Willing to Pay Premium or Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>$2.77</td>
<td>($2.77)</td>
<td>0.74</td>
<td>Undefined</td>
<td>1.00</td>
</tr>
<tr>
<td>$5</td>
<td>$2.77</td>
<td>$2.23</td>
<td>0.74</td>
<td>0.750</td>
<td>0.59</td>
</tr>
<tr>
<td>$10</td>
<td>$2.77</td>
<td>$7.23</td>
<td>0.74</td>
<td>0.375</td>
<td>0.38</td>
</tr>
<tr>
<td>$15</td>
<td>$2.77</td>
<td>$12.23</td>
<td>0.74</td>
<td>0.250</td>
<td>0.16</td>
</tr>
<tr>
<td>$20</td>
<td>$2.77</td>
<td>$17.23</td>
<td>0.74</td>
<td>0.187</td>
<td>0.10</td>
</tr>
<tr>
<td>$25</td>
<td>$2.77</td>
<td>$22.23</td>
<td>0.74</td>
<td>0.150</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: MC = marginal cost; MP = marginal profit; O = occupancy proportion.
a. Ignoring the time value of money (for simplicity), the marginal cost, MC, is simply the cost per the investment cycle, or $1,500 + $75, which works out to $2.77 per room-night over the 730 days in the two-year horizon.

Exhibit 2:
Calculations to Identify the Decision regarding the Number of Rooms to Convert

<table>
<thead>
<tr>
<th>Daily Occupancy (%)</th>
<th>Probability of Occupancy</th>
<th>Rooms to Convert (j)</th>
<th>Probability of Needing j or More Converted Rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0630</td>
<td>0.00</td>
<td>1.0000</td>
</tr>
<tr>
<td>15</td>
<td>0.0027</td>
<td>8.55</td>
<td>.9370</td>
</tr>
<tr>
<td>20</td>
<td>0.0082</td>
<td>11.40</td>
<td>.9343</td>
</tr>
<tr>
<td>25</td>
<td>0.0082</td>
<td>14.25</td>
<td>.9261</td>
</tr>
<tr>
<td>30</td>
<td>0.0110</td>
<td>17.10</td>
<td>.9179</td>
</tr>
<tr>
<td>35</td>
<td>0.0137</td>
<td>19.95</td>
<td>.9069</td>
</tr>
<tr>
<td>40</td>
<td>0.0329</td>
<td>22.80</td>
<td>.8932</td>
</tr>
<tr>
<td>45</td>
<td>0.0082</td>
<td>25.65</td>
<td>.8603</td>
</tr>
<tr>
<td>50</td>
<td>0.0438</td>
<td>28.50</td>
<td>.8521</td>
</tr>
<tr>
<td>55</td>
<td>0.0438</td>
<td>31.35</td>
<td>.8083</td>
</tr>
<tr>
<td>60</td>
<td>0.0630</td>
<td>34.20</td>
<td>.7645</td>
</tr>
<tr>
<td>65</td>
<td>0.0301</td>
<td>37.05</td>
<td>.7015</td>
</tr>
<tr>
<td>70</td>
<td>0.0384</td>
<td>39.90</td>
<td>.6714</td>
</tr>
<tr>
<td>75</td>
<td>0.0521</td>
<td>42.75</td>
<td>.6330</td>
</tr>
<tr>
<td>80</td>
<td>0.0685</td>
<td>45.60</td>
<td>.5809</td>
</tr>
<tr>
<td>85</td>
<td>0.0850</td>
<td>48.45</td>
<td>.5124</td>
</tr>
<tr>
<td>90</td>
<td>0.0849</td>
<td>51.30</td>
<td>.4274</td>
</tr>
<tr>
<td>95</td>
<td>0.0877</td>
<td>54.15</td>
<td>.3425</td>
</tr>
<tr>
<td>100</td>
<td>0.2548</td>
<td>57.00</td>
<td>.2548</td>
</tr>
</tbody>
</table>

a. $j = 150 \text{ rooms} \times .38 (= \text{proportion of customers willing to pay the $10 premium}) \times \text{daily occupancy}/100.$
associated with different solutions. Second, it is more difficult to incorporate the time value of money. For short-horizon decisions, such as the one examined here, the effects of the time-value of money are less pronounced, however. A third limitation is that one needs to perform additional calculations to determine the total expected payoff of the recommended solution, in contrast to simulation optimization approach, which yielded such information directly. The reason for this difference is that a newsvendor problem bases a decision on marginal values, while the simulation optimization based a decision on total profitability. Nonetheless, the expected value of a decision can be calculated as follows:

\[\text{Sum, across hotel occupancies, the} \]
\[\text{occupancy probability} \times \left[MP \times \text{smaller of (demand for converted rooms,)} \right. \]
\[\text{rooms converted) \times MC \times \text{maximum of (rooms converted - demand for)} \]
\[\text{converted rooms, 0]} \],
\[\text{where} \]
\[\text{demand for converted rooms} = \]
\[\text{total rooms} \times \text{occupancy proportion} \times \]
\[\text{room conversion rate,} \]
\[\text{room conversion rate is given by the} \]
\[\text{probability that customers are willing to pay the specified premium or higher for the} \]
\[\text{converted room, and} \]
\[\text{MR and MC are as defined earlier.} \]

Applying this calculation to the $10 price premium and 54 converted rooms yields a total expected value of $264.40 per night, or $193,013 over the two-year decision horizon. This value is within 0.6 percent of the value yielded by the simulation optimization performed by Dittman and Hesford.

Conclusions

A newsvendor model—a classic inventory model from the field of operations management—offers a simpler approach to investment decisions than the simulation optimization approach presented by Dittman and Hesford. While the simulation optimization yields information that cannot be derived from the newsvendor approach, applying two related newsvendor models—the first to set the price premium for the converted rooms and the second to set the number of rooms to be converted—yields the same answers as the simulation optimization. While this may not always be true, it is always good to tailor a solution to a problem. If one is looking for a quick and reasonably accurate decision model, the newsvendor model belongs in one’s model “tool-kit.”

References