The Impact of Social Media on Lodging Performance
社交媒体对住宿业绩效的影响
(Mandarin Translation)
Cornell Hospitality Report
Vol. 12 No. 15, November 2012
by Chris K. Anderson, Ph.D.
中文版本由周恩临翻译

All CHR reports are available for free download, but may not be reposted, reproduced, or distributed without the express permission of the publisher.
The Center for Hospitality Research
Hospitality Leadership Through Learning

Thank you to our generous Corporate Members

Senior Partners
Accenture
ASAE Foundation
Carlson Rezidor Hotel Group
Hilton Worldwide
National Restaurant Association
SAS
STR
Taj Hotels Resorts and Palaces

Partners
Davis & Gilbert LLP
Deloitte & Touche USA LLP
Denihan Hospitality Group
eCornell & Executive Education
Expedia, Inc.
Forbes Travel Guide
Four Seasons Hotels and Resorts
Fox Rothschild LLP
HVS
Hyatt
InterContinental Hotels Group
Jumeirah Group
LRP Publications
Maritz
Marriott International, Inc.
Marsh’s Hospitality Practice
McDonald’s USA
newBrandAnalytics
priceline.com
PricewaterhouseCoopers
Proskauer
ReviewPro
Sabre Hospitality Solutions
Sathguru Management Consultants (P) Ltd.
Schneider Electric
Thayer Lodging Group
Thompson Hotels
Travelport
TripAdvisor
WATG
Wyndham Hotel Group

Friends
4Hoteliers.com • Berkshire Healthcare • Center for Advanced Retail Technology • Cleverdis • Complete Seating • Cruise Industry News • DK Shifflet & Associates • ehotelier.com • EyeforTravel • The Federation of Hotel & Restaurant Associations of India (FHRAI) • Gerencia de Hoteles & Restaurantes • Global Hospitality Resources • Hospitality Financial and Technological Professionals • hospitalityInside.com • hospitalitynet.org • Hospitality Technology Magazine • HotelExecutive.com • International CHRIE • International Hotel Conference • International Society of Hospitality Consultants • iPerceptions • JDA Software Group, Inc. • J.D. Power and Associates • The Leading Hotels of the World, Ltd. • Lodging Hospitality • Lodging Magazine • LRA Worldwide, Inc. • Milestone Internet Marketing • MindFolio • Mindshare Technologies • ProCutWright Inc. • PKF Hospitality Research • Questex Hospitality Group • Resort and Recreation Magazine • The Resort Trades • RestaurantEdge.com • Shibata Publishing Co. • Unifocus • Vantage Strategy • WiWH.COM
The Impact of Social Media on Lodging Performance

社交媒体对住宿业绩效的影响

Mandarin Translation by Enlin Zhou

中文版本由周恩临翻译

ABOUT THE AUTHOR

Chris K. Anderson, Ph.D., is an associate professor at the Cornell School of Hotel Administration (cka9@cornell.edu). Formerly on faculty at the Ivey School of Business in London, Ontario, his main research focus is on revenue management and service pricing. He actively works with numerous industry types in the application and development of RM, having worked with a variety hotels, airlines, rental car, and tour companies as well as numerous consumer packaged good and financial services firms. He serves on the editorial board of the Journal of Revenue and Pricing Management and is the regional editor for the International Journal of Revenue Management.

作者简介

克里斯托弗•安德森博士是康奈尔大学酒店管理学院副教授，曾任教于加拿大安大略大学毅伟商学院。安德森教授主要从事收益管理和服务业定价领域的研究，并与酒店、航空、租车、旅行社、消费品和金融服务公司积极开展收益管理应用与发展方向的研究。他还在《收益与定价管理期刊》编委会成员，以及《国际收益管理期刊》的区域编辑。
Executive Summary

Social media has been touted as having an increasingly important role in many aspects of the hospitality industry, including guest satisfaction and process improvement. However, one of the more intriguing aspects of social media is their potential to move markets by driving consumers’ purchasing patterns and influencing lodging performance.

In the absence of comprehensive attempts to quantify the impact of social media upon lodging performance as measured by bookings, occupancy, and revenue, this report uses the unique position of Cornell’s Center for Hospitality Research to combine data from three CHR research partners (ReviewPro, STR, and Travelocity), and two other data providers (comScore and TripAdvisor) in a first attempt at determining ROI for social-media efforts.

The analysis finds the following. First, the percentage of consumers consulting reviews at TripAdvisor prior to booking a hotel room has steadily increased over time, as has the number of reviews they are reading prior to making their hotel choice. Second, transactional data from Travelocity illustrate that if a hotel increases its review scores by 1 point on a 5-point scale (e.g., from 3.3 to 4.3), the hotel can increase its price by 11.2 percent and still maintain the same occupancy or market share. Third, to measure the impact of user reviews on hotel pricing power, consumer demand, and revenue performance the study uses matched-sample data from ReviewPRO and STR. By matching ReviewPRO’s Global Review Index with STR’s hotel sales and revenue data, a regression analysis finds that a 1-percent increase in a hotel’s online reputation score leads up to a 0.89-percent increase in price as measured by the hotel’s average daily rate (ADR). Similarly this 1-percent increase in reputation also leads to an occupancy increase of up to 0.54 percent. Finally, this 1-percent reputation improvement leads up to a 1.42-percent increase in revenue per available room (RevPAR).

In service industry, particularly customer satisfaction and process improvement, social media becomes increasingly important. However, one of the more intriguing aspects of social media is their potential to move markets by driving consumers’ purchasing patterns and influencing lodging performance.

In the absence of comprehensive attempts to quantify the impact of social media upon lodging performance as measured by bookings, occupancy, and revenue, this report uses the unique position of Cornell’s Center for Hospitality Research to combine data from three CHR research partners (ReviewPro, STR, and Travelocity), and two other data providers (comScore and TripAdvisor) in a first attempt at determining ROI for social-media efforts.

The analysis finds the following. First, the percentage of consumers consulting reviews at TripAdvisor prior to booking a hotel room has steadily increased over time, as has the number of reviews they are reading prior to making their hotel choice. Second, transactional data from Travelocity illustrate that if a hotel increases its review scores by 1 point on a 5-point scale (e.g., from 3.3 to 4.3), the hotel can increase its price by 11.2 percent and still maintain the same occupancy or market share. Third, to measure the impact of user reviews on hotel pricing power, consumer demand, and revenue performance the study uses matched-sample data from ReviewPRO and STR. By matching ReviewPRO’s Global Review Index with STR’s hotel sales and revenue data, a regression analysis finds that a 1-percent increase in a hotel’s online reputation score leads up to a 0.89-percent increase in price as measured by the hotel’s average daily rate (ADR). Similarly this 1-percent increase in reputation also leads to an occupancy increase of up to 0.54 percent. Finally, this 1-percent reputation improvement leads up to a 1.42-percent increase in revenue per available room (RevPAR).

此分析有以下发现。首先，在预定酒店之前通过TripAdvisor查看酒店评价的消费者比例稳步上升。消费者在做决定前阅读评论的数量也相应增多。其次，Travelocity的数据表明，如果酒店评价在五分制系统中提升1分（如从3.3分提升到4.3分），则酒店可以提价11.2%而维持入住率或市场份额不变。再次，为评估顾客评论对于酒店定价权、客房需求和收益绩效的影响，本研究使用了ReviewPRO和STR提供的成对样本数据，并进行匹配ReviewPRO的全球评论指数（Global Review IndexTM）和STR的酒店销售与收益数据，对数据进行回归分析，我们发现酒店在线声誉增长1%会引起其价格（以日均房价 计量）增长至多0.89%，入住率增长至多0.54%，而单房收益（RevPar）增长至多1.42%。

译者注：原文Lodging Industry译为住宿业，以涵盖酒店、青年旅社、民宿等提供住宿服务的实体。
The Impact of Social Media on Lodging Performance

Hotel industry executives and managers have seen much anecdotal evidence that social media influence guests’ booking behavior—and thereby rate and occupancy. However, so far I am aware of no comprehensive analysis of the extent to which social media postings move markets. The cooperation of three Cornell Center for Hospitality Research partners makes such an analysis possible, as presented in this report. Those partners, ReviewPro, STR, and Travelocity, make data available on a non-disclosure basis for aggregate analysis, in this case, an estimate of return on investment for social-media activities. For this report, comScore and TripAdvisor also provided data.

In this CHR Report, I analyze the effect of social media upon consumers’ purchase decisions and hotels’ top-line performance. Using online consumer panel data from comScore, the study illustrates the upstream impact of TripAdvisor on online hotel reservations. In this portion of the study, I show that the percentage of consumers consulting reviews at TripAdvisor prior to booking a hotel room has steadily increased over time, as has the number of reviews they are reading prior to making their hotel choice.

Using transactional data from Travelocity, I illustrate the impact of user reviews upon consumers’ hotel choice at the time of purchase. Data from purchased and non-purchased hotels illustrate that if a hotel increases its review scores by 1 point on a 5-point scale (e.g., from 3.3 to 4.3), the hotel can increase price by 11.2 percent and still maintain the same occupancy or market share. Last I measure the impact of user reviews on hotel pricing power, consumer demand, and revenue performance using matched-sample data from ReviewPRO and STR. By matching ReviewPRO’s Global Review IndexTM with STR’s hotel sales and revenue data, I estimate the impact of hotels’ online reputation in social-media channels upon hotel performance. I demonstrate that a 1-percent increase in a hotel’s online reputation score leads up to a 0.89-percent increase in price as measured by the hotel’s average daily rate (ADR). Similarly this 1-percent increase in reputation also leads to demand creation with up to a 0.54-percent increase in occupancy. Finally, this 1-percent reputation improvement leads up to a 1.42-percent increase in revenue per available room (RevPAR).

社媒媒体对住宿业 绩效的影响

社交媒体对预定行为、房价和入住率的影响，酒店业者已有察觉。但作者至今尚未听闻针对社交媒体如何改变市场进行系统分析的研究。康奈尔服务业研究中心的三位合作伙伴使得该研究得以实现。这些伙伴（包括ReviewPRO，STR，Travelocity）基于保密协议提供了社交媒体活动预期投资回报的总量数据，comScore和TripAdvisor也提供了数据。

此报告分析了社交媒体对消费者购买决策和酒店营业收入的影响。其中，报告利用comScore的在线消费者固定样本面板数据分析了TripAdvisor对酒店在线预订的影响。研究显示，消费者在预定酒店前通过TripAdvisor查看酒店评价的比例和他们所阅读的评论数量均稳步增加。

报告还使用了Travelocity的交易数据来分析顾客评论对消费者选择酒店的影响。从消费者订购和未订购酒店客房的数据中发现，如果酒店评价分数在五分制基础上提升1分（如从3.3分提升到4.3分），则该酒店可提价11.2%而维持相同的入住率或市场份额。最后，报告通过使用ReviewPRO和STR的成对样本分析顾客评论对酒店定价、客房需求和收益表现的影响。通过匹配ReviewPRO的全球评价指数（Global Review IndexTM）和STR的酒店销售与收益数据，报告估计了酒店在线声誉对业绩的影响：在线声誉增长1%会引起其价格（以日均房价计量）增长至少0.89%，入住率增长至少0.54%，而单房收益增长至少1.42%。
This research is the first to perform an assessment of the influence of social media upon hotel performance by illustrating the increasing role of social media in the research phase and how this ultimately leads to hotel pricing power and revenue generation. This is a step beyond earlier efforts that focused more on the use of social media rather than its impact on performance. Similar to the early days of electronic distribution, social media and user-generated content are of increasing importance in the eyes of hospitality companies as consumers become more engaged across numerous platforms during the decision process. One of the aims of this study is to help shed light on why some hotel companies are able to achieve price and occupancy premiums in this new environment.

User Generated Content During Consumers’ Hotel Search

TripAdvisor is by far the dominant source for online reviews in the hospitality space, with more than 75 million reviews generated by some 32 million users.4 In terms of the hotel choice process, as reported by Market Metrix,5 the tipping point came in 2010, as shown in Exhibit 1. At this point, the guest experience mentioned in customer reviews became the dominant factor in hotel selection, with 51 percent of survey respondents indicating they factored guest experience factors into their hotel selection decision. Given TripAdvisor’s dominance in the generation of user reviews I focused on how often consumers consult TripAdvisor prior to booking a room using publicly available data from comScore.

Exhibit 1

Factors in hotel selection

<table>
<thead>
<tr>
<th>Factor</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Experience Factors</td>
<td>51%</td>
</tr>
<tr>
<td>Location</td>
<td>48%</td>
</tr>
<tr>
<td>Price</td>
<td>42%</td>
</tr>
<tr>
<td>Loyalty Program Points</td>
<td>18%</td>
</tr>
<tr>
<td>Promotions</td>
<td>16%</td>
</tr>
<tr>
<td>Amenities</td>
<td>8%</td>
</tr>
<tr>
<td>Convention</td>
<td>8%</td>
</tr>
<tr>
<td>Green Program</td>
<td>1%</td>
</tr>
</tbody>
</table>

Study by Market Metrix, Hotel & Motel Management, January 13, 2010.
Exhibit 2

TripAdvisor visitation prior to Brand.com booking

<table>
<thead>
<tr>
<th>Year</th>
<th>% of Brand.com visiting TripAdvisor</th>
<th>Visits per reservation</th>
<th>Pages per visit</th>
<th>Time per visit (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>28%</td>
<td>3.71</td>
<td>6.89</td>
<td>4.52</td>
</tr>
<tr>
<td>2009</td>
<td>26%</td>
<td>3.78</td>
<td>6.19</td>
<td>4.27</td>
</tr>
<tr>
<td>2010</td>
<td>36%</td>
<td>4.72</td>
<td>5.51</td>
<td>3.44</td>
</tr>
</tbody>
</table>

This comScore dataset consists of 1,720 purchase events (hotel reservations) at InterContinental Hotels Group’s HolidayInn.com site during nine months: June, July, and August of 2008, 2009, and 2010. This is an example of a brand’s website that has come to be generically known as Brand.com. Owing to the nature of the comScore data I have all travel-related website visits (e.g., TripAdvisor.com, Orbitz.com, LasVegas.com) and travel-related searches (i.e., Google, Yahoo, and Bing) for 60 days prior to each of these reservations. Thus I can track the clickstream where consumers went online prior to making a reservation at the suppliers’ Brand.com website, and determine what sort of travel-related research they performed. As one would expect; consumers who make reservations online also spend a great deal of time online.

I focused on TripAdvisor reviews in this study. For a more generalized look at online behavior, please see my CHR Report, “Search, OTAs, and Online Booking: An Expanded Analysis of the Billboard Effect.” Exhibit 2 summarizes TripAdvisor behavior of guests who book directly at the Brand.com website.

As shown, an increasing proportion of guests over the three years are visiting TripAdvisor prior to booking with the hotel directly. Not only is the fraction of consumers increasing, but those consumers that do visit are visiting more often (that is, visits per reservation are increasing) and they view more pages overall (although pages per visit and time per visit dropped slightly). I believe the drop in time per visit may be due to a more efficient TripAdvisor experience and faster connections (and computers) or simply the increase in consumers’ search abilities.
Exhibit 3 summarizes customer activity in terms of when they visit TripAdvisor prior to booking their hotel at the hotel's website. A little more than one-fourth (26.5%) of TripAdvisor visits occur in the last five days prior to the reservation, with the remaining three-quarters roughly equally spread out over the other 55 days. This may be an indication of how guests' research intensifies just prior to making the purchase decision. The close proximity (to the purchase) of consumer visitation to TripAdvisor perhaps indicates that user reviews are some of the final and potentially pivotal criteria in the hotel selection process.

Point of Purchase Impact

Moving away from Brand.com, let's look at the impact of user reviews at a different point of purchase, in this case, at an online travel agency. I analyzed the impact of user reviews at Travelocity.com upon the purchases made through that site. The data consist of 13,341 reservations made during July 2012 in nine major U.S. cities. For each of these 13 thousand-plus reservations, I have information (as provided by a typical OTA display) for the property purchased, as well as all other properties not purchased on the final page the customer looked at prior to selecting the property in question.
Exhibit 4

Logistic regression results: position, reviewer score, number of reviews, and relative room price

<table>
<thead>
<tr>
<th>Parameter Estimates*</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>-0.1218</td>
</tr>
<tr>
<td>User review score</td>
<td>0.133</td>
</tr>
<tr>
<td>Number of reviews</td>
<td>0.0025</td>
</tr>
<tr>
<td>Relative price</td>
<td>-1.192</td>
</tr>
</tbody>
</table>

*All significant at 0.001 level.

Using these data we can gain insight into some of the key attributes that drive hotel selection decisions. Specifically, I estimate the probability a customer would purchase a given hotel as a function of price, user review ratings, and the number of user reviews. Because the outcome variable is binary (1 or 0; 1 for purchase, 0 for non-purchase), regular linear regression can’t be used to estimate the impacts of these attributes upon the purchase decision. However, logistic regression can be applied. Using logistic regression I model the probability that a customer would purchase a listed hotel given its attributes (e.g., price, star rating). The logistic regression model given here:

\[
\text{Probability of Purchase} \mid X = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}
\]

is similar to linear regression where outcomes are modeled as a function of a constant (\(\alpha\)) and some attributes (\(X\)), which are weighted by parameters (\(\beta\)) modified with the use of Euler’s number or e, a mathematical constant equal to about 2.71828. Please contact me if you would like a discussion of the technical issues behind why we need such a model. For this purpose, what is important to realize is that the \(\beta\)s in logistic regression, as in regular regression, indicate the impact of the attribute upon the outcome.

Exhibit 4 summarizes parameter estimates from a logistic regression model of purchase decisions. To account for the hotel’s position on the screen, I added a variable, Position, to the independent variables. Position describes the placement of the hotel in the list of hotels (e.g., 1st, 2nd, or 3rd, from the top and so forth). Position takes values of 1-25 with 1 being the top position and 25 at the bottom of the list. Owing to the differences in prices across chain scales I use a relative price measure. The Price variable is a hotel’s price divided by the average price of all same star hotels co-listed with the subject hotel. I also control for chain scale by adding an indicator variable for each star level. Of particular interest are the remaining two variables, review scores and review volume and their impacts upon price. Using the regression I estimate how much higher the hotel could price if it had better review scores.

*All in 0.001 level significant.
Given the nature of logistic regression, the parameter estimates (the \(\beta \)s) are not as easily interpreted as in regular regression. Instead of using the parameter estimates, we focus on the odds ratio. The odds ratio represents the change in the odds of an option being chosen (in this case, that is the odds of the hotel being booked) given a one-unit change in the attribute. The odds are the probability of being selected divided by probability of not being selected.

\[
\text{Odds} = \frac{P}{1-P}
\]

The Position value of 0.885 demonstrates the negative effect of being ever lower on the search results. If a hotel is listed at spot 2 versus 1 (or 10 versus 9) its odds of being selected decrease to 0.885 of the odds of being selected when in position 1. That equates to an 11.5-percent decrease in its chances for every notch it drops (all else being equal).

The results of review scores move in the other direction. Using Travelocity’s 5-point score for user reviews, the Review Score odds ratio means that increasing one point increases the odds of being selected by 14.2 percent. Using the example of a hotel that goes from a review score of, say, 3.3 to one of 4.3, that property has increased its odds of being selected by 1.142 times the odds when its review score was 3.3. A similar result is found for Number of reviews. The 1.002 indicates that for each new review a hotel adds, it increases its odds of being selected increase by 1.002 or 0.2 percent.

It is a little harder to interpret the odds ratio of price in this equation because this variable is actually relative price. Price is perhaps best understood by combining the effects of price and review scores. Say that the average price of all competing hotels (those with the same star rating) that appear on the list page with our hotel was $100 and our hotel’s price was $100. If we were to increase our review score from 3.3 to 4.3 we could increase our price about 11.2 percent and maintain the same probability of being selected. The positive effect of the review score change on the odds of being chosen would offset the presumably negative odds caused by a price increase.

Impact on Hotel Performance

Taking the analysis one step further, I analyze the effect of social presence on overall hotel performance, again using matched samples of performance data and online reputation data. Performance data are monthly revenue, demand, and supply data from STR for 2½ years (January 2010 through June 2012) for each subject property. I also compared each hotel with its specified list of competitors, to gain a sense of relative performance in an effort to control for seasonality.
I have these data for 11 major markets (6 European and 5 North American cities).8 I use ReviewPro's Global Review Index (GRI) for the subject hotels as well as each hotel within its STR listed competitive set as a measure of online reputation. ReviewPro aggregates hundreds of millions of social media mentions, in over 35 languages, from Online Travel Agencies (OTAs), review websites and social media platforms. Their GRI is an aggregate online reputation score for an individual hotel, group of hotels, or chain. It is based on scores given by re-viewers on major online review sites and online travel agencies (OTAs). The GRI is calculated by analyzing quantitative scores on these sites, using a proprietary algorithm.9

With this matched data set we look at the impact of GRI on three typical industry metrics: ADR (average daily rate), occupancy, and RevPAR (revenue per available room). In all cases, I am using an index. Thus the measurements are the effect of GRI against a hotel’s pricing power as measured by its ADR Index, which is a hotel’s average daily rate divided by the average of its competitors’ ADRs; the GRI’s impact upon demand as measured by the occupancy index, and on overall performance as measured by GRI upon a RevPAR index. Likewise, the GRI Index is calculated as the subject hotel’s GRI divided by the average GRI of its competitive set hotels. This GRI Index is the independent variable.

Similar to many marketing actions (e.g., advertising and pricing) we can anticipate decreasing marginal returns.10 That is, as the GRI score increases the additional impact upon performance decreases. To incorporate decreasing marginal returns, I use a multiplicative model of impact often referred to as a constant elasticity model. Using price and demand as an example I illustrate this approach as follows.

Price elasticity of demand is defined as the percentage change in demand for a given percentage change in price. So, for example, if price increased by 1 percent, and as a result demand fell 2 percent, then elasticity is -2 (-2%/1%). Price elasticity (ε) can be expressed as:

\[
\varepsilon = \frac{\% \Delta Q}{\% \Delta P} = \frac{\partial Q}{\partial P} \frac{P}{Q}
\]

where ε is the price elasticity, P is the price, and Q is the quantity demanded. If we propose decreasing marginal returns, a demand model might look like Q = aPb.

If we take the natural logarithm (the inverse of Euler’s number) of each side of this equation we get a log-linear demand model of the following form:

\[
\ln Q = a + b \ln P
\]

where Q and P are defined as before, and a and b are parameters to be estimated. The log-linear demand function implies that the price elasticity of demand is constant:

\[
\varepsilon = \frac{d\ln Q}{d\ln P} = b
\]

Price elasticity of demand is defined as the percentage change in demand for a given percentage change in price. So, for example, if price increased by 1 percent, and as a result demand fell 2 percent, then elasticity is -2 (-2%/1%). Price elasticity (ε) can be expressed as:

\[
\varepsilon = \frac{\% \Delta Q}{\% \Delta P} = \frac{\partial Q}{\partial P} \frac{P}{Q}
\]

where ε is the price elasticity, P is the price, and Q is the quantity demanded. If we propose decreasing marginal returns, a demand model might look like Q = aPb.

If we take the natural logarithm (the inverse of Euler’s number) of each side of this equation we get a log-linear demand model of the following form:

\[
\ln Q = a + b \ln P
\]

where Q and P are defined as before, and a and b are parameters to be estimated. The log-linear demand function implies that the price elasticity of demand is constant:

\[
\varepsilon = \frac{d\ln Q}{d\ln P} = b
\]
Using data from over 50,000 monthly observations from the eleven global cities, we can look at the impact of GRI upon performance in this log linear framework where I model the impact of \(\ln(\text{GRI Index}) \) upon \(\ln(\text{ADR Index}) \), \(\ln(\text{Occupancy Index}) \), and \(\ln(\text{RevPAR Index}) \), using three log linear models.

Exhibit 5 summarizes the elasticities for GRI upon these three performance metrics. The table indicates a stronger impact of GRI upon pricing power (ADR) than on demand (Occupancy). This indicates firms are pricing consistent with their value proposition. Better reviews lead to higher prices, while lower reviews force prices lower for hotels to achieve similar occupancies under both settings. As the impacts of GRI upon demand and pricing power are both positive, the impact upon performance or RevPAR is even stronger.

Exhibit 5 looks at all chain scales together, with the subsequent rows looking at online reputation impact by chain scale. The table entries represent the percentage impact upon pricing, demand, and performance given a 1-percent change in online reputation as measured by GRI. Looking at the first row, a 1-percent increase in a hotel’s GRI score, say from 80 to 80.8 aligns with a 0.96-percent increase in RevPAR.

<table>
<thead>
<tr>
<th></th>
<th>Pricing Power (ADR)</th>
<th>Demand (Occupancy)</th>
<th>Performance (RevPAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.80</td>
<td>0.20</td>
<td>0.96</td>
</tr>
<tr>
<td>Luxury</td>
<td>0.44</td>
<td>0.09</td>
<td>0.49</td>
</tr>
<tr>
<td>Upper Upscale</td>
<td>0.57</td>
<td>0.30</td>
<td>0.74</td>
</tr>
<tr>
<td>Upscale</td>
<td>0.67</td>
<td>0.19</td>
<td>0.83</td>
</tr>
<tr>
<td>Upper MidScale</td>
<td>0.74</td>
<td>0.42</td>
<td>1.13</td>
</tr>
<tr>
<td>MidScale</td>
<td>0.89</td>
<td>0.54</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Exhibit 5: GRI弹性

<table>
<thead>
<tr>
<th></th>
<th>定价权（日均房价）</th>
<th>需求（入住率）</th>
<th>业绩（单房收益）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全部</td>
<td>0.80</td>
<td>0.20</td>
<td>0.96</td>
</tr>
<tr>
<td>奢侈酒店</td>
<td>0.44</td>
<td>0.09</td>
<td>0.49</td>
</tr>
<tr>
<td>超高档酒店</td>
<td>0.57</td>
<td>0.30</td>
<td>0.74</td>
</tr>
<tr>
<td>高档酒店</td>
<td>0.67</td>
<td>0.19</td>
<td>0.83</td>
</tr>
<tr>
<td>中高档酒店</td>
<td>0.74</td>
<td>0.42</td>
<td>1.13</td>
</tr>
<tr>
<td>中档酒店</td>
<td>0.89</td>
<td>0.54</td>
<td>1.42</td>
</tr>
</tbody>
</table>

作者利用来自11个城市超过五万条数据分析全球评论指数对于酒店业绩的影响。在上述模式下，对GRI的自然对数对于三个指数（日均房价、入住率和单房收益）的自然对数的影响进行建模分析。

图5概括了GRI对三项业绩指标的弹性。显然，GRI对于定价权（日均房价）的影响强于对客房需求（入住率）的影响。这表明，酒店的定价与其价值定位相符。更好的用户评价带来更高的价格，而较差的评价则迫使酒店降低价格以维持入住率。GRI对于客房需求和定价权有积极的影响，而其对单房收益的影响则更为强烈。

图5的结果在涵盖不同等级连锁酒店的同时，也显示了在线声誉对各等级酒店的影响。表格中的条目代表在线声誉（以GRI衡量）每1%的变化对客房价格、需求和酒店业绩的影响。如第一行所示，酒店GRI分数提高1%（例如，从80增加到80.8），单房收益则增加0.96%。
It is interesting to compare the RevPAR elasticity across chain scales, as the effect of online reputation is stronger for lower-end chain scales. Thus, the gain from online reputation improvement is much more profound for a mid-scale property (1.42%) than for a luxury hotel (0.49%). Given the vast diversity of service levels in mid-scale hotels, would-be guests may experience more uncertainty in the level of service in lower chain scales. Thus, it makes sense that reviews in the form of the GRI have a much stronger effect on lower chain scales. The improvement in online reputation represented by a strong GRI reduces the level of service quality uncertainty in the eyes of consumers. As a result those highly rated firms have increased pricing power compared to those with lower ratings.

In different chains of mid-scale hotels, the impact of online reputation is stronger for lower-end chains. Thus, the increased gain from online reputation improvement is much more profound for a mid-scale property (1.42%) than for a luxury hotel (0.49%). Given the vast diversity of service levels in mid-scale hotels, would-be guests may experience more uncertainty in the level of service in lower chain scales. Thus, it makes sense that reviews in the form of the GRI have a much stronger effect on lower chain scales. The improvement in online reputation represented by a strong GRI reduces the level of service quality uncertainty in the eyes of consumers. As a result, those highly rated firms have increased pricing power compared to those with lower ratings.

Summary

Hotel operators have suspected that the effect of social media and user generated content on hotel performance has been strengthening. This paper provides a numerical confirmation and estimate of those effects. Reviews and review sites continue to be in the forefront when consumers are planning a hotel room purchase. Our comScore sample indicates that the percentage of consumers consulting online review sites prior to their purchase is increasing with time, and the number of visits per person also has grown noticeably.

With regard to online reviews, TripAdvisor continues to play an increasing role in the eyes of consumers, and with its marketing options this site has the potential to affect hotel performance as it acts as a portal to brand sites. More generally, OTA reviews, their quality and numbers, lead to increased conversion rates and improved pricing power at the OTA, as evidenced by our investigation of transactions at Travelocity. Using logistic regression to model purchase incidence I estimate that a 1-point increase in user review score (on an OTA’s 5-point scale) would allow a property to increase price by 11.2 percent and maintain the same purchase probability or market share. Lastly, the cumulative impact of user reviews across all channels shows a positive relationship with overall hotel performance.

We see that improved online reputation, as measured by ReviewPRO’s GRI, results in increased pricing power and occupancy for a hotel. The model estimates that a 1-percent increase in GRI leads to as much as a 0.89-percent increase in ADR, and a 0.54-percent increase in occupancy. Combining these effects, a 1-percent increase in GRI results in up to a 1.42-percent increase in RevPAR.

As a note of caution this study has focused on the impact of user generated content and hotel performance. Needless to say, many factors contribute to hotel performance that are not measured here. That said, these results are generalizable to the extent that the factors that are not measured are random across the firms in our samples. As I attempted to collect a sample across a wide spectrum of locations, it is reasonable to say that these results do apply to hotels generally.

在线言论方面，TripAdvisor继续在消费者中扮演关键角色。由于其市场的推广功能，TripAdvisor可能影响酒店业绩。大体上来说，在线旅游平台上评论的质量和数量会增加转化率和提升定价权。这已被本文对Travelocity数据所做的分析和调查证实，作者使用逻辑回归模型，估算出一个用户评论在OTA的分数提高一分，酒店可以提高11.2%的价格而维持入住率或市场份额不变。最后，所有渠道用户评论的累积影响与酒店总体业绩正相关。

在线评论，TripAdvisor在消费者中扮演关键角色。但因其市场的推广功能，TripAdvisor可能影响酒店业绩。大体上来说，在线旅游平台上评价的质量和数量会增加转化率和提升定价权。这已被本文对Travelocity数据所做的分析和调查证实，作者使用逻辑回归模型，估算出一个用户评论在OTA的分数提高一分，酒店可以提高11.2%的价格而维持入住率或市场份额不变。最后，所有渠道用户评论的累积影响与酒店总体业绩正相关。

酒店若提升以ReviewPRO的GRI来测算的在线声誉，其定价权和入住率会随之改善，GRI每1%的增加日均房价增加至多0.89%，入住率增加至多0.54%，而单房收益增加至多1.42%。

在此需要提醒读者的是，本次研究主要聚焦于用户生成内容对酒店业绩的影响。显然，许多左右酒店业绩的因素未在本文提及，尽管如此，通过本文研究结果可推断那些未被测算的因素在样本中是随机的。由于作者搜集了横跨不同区域的样本，可认为本文研究结论对于酒店普遍适用。
Cornell Hospitality Quarterly
http://cqx.sagepub.com/

2013 Reports
Vol. 13 No. 7 Social Media Use in the Restaurant Industry: A Work in Progress, by Abigail Needles and Gary M. Thompson, Ph.D.
Vol. 13 No. 6 Common Global and Local Drivers of RevPAR in Asian Cities, by Crocker Liu, Ph.D., Pamela Moulton, Ph.D., and Dan Quan, Ph.D.
Vol. 13 No. 5 Network Exploitation Capability: Model Validation, by Gabriele Piccoli, Ph.D., William J. Carroll, Ph.D., and Paolo Torchio
Vol. 13 No. 4 Attitudes of Chinese Outbound Travelers: The Hotel Industry Welcomes a Growing Market, by Peng Liu, Ph.D., Qingqing Lin, Lingqiang Zhou, Ph.D., and Raj Chandnani
Vol. 13 No. 3 The Target Market Misapprehension: Lessons from Restaurant Duplication of Purchase Data, Michael Lynn, Ph.D.
Vol. 13 No. 2 Compendium 2013
Vol. 13 No. 1 2012 Annual Report

2013 Industry Tools
Vol. 4, No. 1 The Options Matrix Tool (OMT): A Strategic Decision-making Tool to Evaluate Decision Alternatives, by Cathy A. Enz, Ph.D., and Gary M. Thompson

2013 Industry Perspectives
Vol. 3, No. 1 Using Research to Determine the ROI of Product Enhancements: A Best Western Case Study, by Rick Garlick, Ph.D., and Joyce Schlienter

2013 Proceedings
Vol. 5 No. 3 2012 Cornell Hospitality Research Summit: Hotel and Restaurant Strategy, Key Elements for Success, by Glenn Withiam
Vol. 5 No. 2 2012 Cornell Hospitality Research Summit: Building Service Excellence for Customer Satisfaction, by Glenn Withiam
Vol. 5 No. 1 2012 Cornell Hospitality Research Summit: Critical Issues for Industry and Educators, by Glenn Withiam

2012 Reports
Vol. 12 No. 16 Restaurant Daily Deals: The Operator Experience, by Joyce Wu, Sheryl E. Kimes, Ph.D., and Upal Dholakia, Ph.D.
Vol. 12 No. 15 The Impact of Social Media on Lodging Performance, by Chris K. Anderson, Ph.D.
Vol. 12 No. 14 HR Branding How Human Resources Can Learn from Product and Service Branding to Improve Attraction, Selection, and Retention, by Derrick Kim and Michael Sturman, Ph.D.
Vol. 12 No. 12 Determining Materiality in Hotel Carbon Footprinting: What Counts and What Does Not, by Eric Ricaurte
Vol. 12 No. 11 Earnings Announcements in the Hospitality Industry: Do You Hear What I Say?, Pamela Moulton, Ph.D., and Di Wu
Vol. 12 No. 10 Optimizing Hotel Pricing: A New Approach to Hotel Reservations, by Peng Liu, Ph.D.
Vol. 12 No. 9 The Contagion Effect: Understanding the Impact of Changes in Individual and Work-unit Satisfaction on Hospitality Industry Turnover, by Timothy Hinkin, Ph.D., Brooks Holtom, Ph.D., and Dong Liu, Ph.D.
Vol. 12 No. 8 Saving the Bed from the Fed, Levon Goukasian, Ph.D., and Qingzhong Ma, Ph.D.
Vol. 12 No. 7 The Ithaca Beer Company: A Case Study of the Application of the McKinsey 7-S Framework, by J. Bruce Tracey, Ph.D., and Brendon Blood
Vol. 12 No. 6 Strategic Revenue Management and the Role of Competitive Price Shifting, by Cathy A. Enz, Ph.D., Linda Canina, Ph.D., and Breffini Noone, Ph.D.
Vol. 12 No. 5 Emerging Marketing Channels in Hospitality: A Global Study of Internet-Enabled Flash Sales and Private Sales, by Gabriele Piccoli, Ph.D., and Chekitan Devc, Ph.D.