Publication Date



Many researchers who use same-source data face concerns about common method variance (CMV). Although post hoc statistical detection and correction techniques for CMV have been proposed, there is a lack of empirical evidence regarding their efficacy. Because of disagreement among scholars regarding the likelihood and nature of CMV in self-report data, the current study evaluates three post hoc strategies and the strategy of doing nothing within three sets of assumptions about CMV: that CMV does not exist, that CMV exists and has equal effects across constructs, and that CMV exists and has unequal effects across constructs. The implications of using each strategy within each of the three assumptions are examined empirically using 691,200 simulated data sets varying factors such as the amount of true variance and the amount and nature of CMV modeled. Based on analyses of these data, potential benefits and likely risks of using the different techniques are detailed.


Required Publisher Statement
© SAGE. Final version published as: Richardson, H. A., Simmering, M. J., & Sturman, M. C. (2009). A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organizational Research Methods, 12(4), 762-800. doi: 10.1177/1094428109332834. Reprinted with permission. All rights reserved.

This article was the recipient of the 2009 ORM Editorial Review Board Best Publication of the Year award.